Kurzmitteilungen / Short Comminications

Synthese und Struktur eines Imino(phosphoranylidenmethyl)phosphans: Ein neues Hetero-Allyl-Anion

Uwe Krüger, Hans Pritzkow und Hansjörg Grützmacher*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg

Eingegangen am 30. August 1990

Key Words: Imino phosphines / Allyl anions / Silyl migration

Synthesis and Structure of an Imino(phosphoranylidenemethyl)phosphine: A New Hetero Allyl Anion

Reaction of the (dichlorophosphinyl)methylphosphonium salt 1 with three equivalents of sodium bis(trimethylsilyl)amide (2) in THF at -78 °C leads to the *P*-(phosphoranylidenemethyl)-substituted iminophosphine 4. Compound 4 is probably formed via 3 by 1,3-silyl migration. According to an X-ray

Die Phosphonio-Gruppe hat als Substituent an π -Systemen einen starken elektronischen Einfluß auf deren Eigenschaften¹⁾. So ist beispielsweise die relativ hohe Stabilität der Phosphor-Ylide auf die Fähigkeit der Phosphonio-Gruppe zurückzuführen, negative Ladung in α -Stellung in σ^* -Orbitale zu delokalisieren (negative Hyperkonjugation)²⁻⁴). Ein reizvoller Aspekt der Untersuchungen an Phosphonio-substituierten niedervalenten Phosphor-Verbindungen ist die isoelektronische und isostrukturelle Analogie von Phosphonio-(R₃P[⊕]-)- und Silyl-(R₃Si-)Gruppen. Letztere werden häufig zur Stabilisierung niederkoordinierter Verbindungen eingesetzt und sind in ihren elektronischen Eigenschaften gut untersucht ^{5,6}.

Nach einem Studium von Phosphonio-substituierten Methylenphosphanen (Phosphavinylphosphonium-Salzen)⁷⁾ und Phosphaalkinen⁸⁾, berichten wir nun über die Synthese und Struktur eines Imino(phosphoranylidenmethyl)phosphans, $R_3P^{\oplus} - C^{\ominus}(SiMe_3) - P = N - SiMe_3$, das sich von dem lange bekannten (Me₃Si)₂N - $P = N - SiMe_3$ ⁹⁾ durch isolobalen Ersatz von N durch C^{\ominus} und R_3Si durch R_3P^{\oplus} ableitet.

[(Dichlorphosphanyl)methyl]tris(dimethylamino)phosphoniumtetraphenylborat⁸⁾ (1) reagiert glatt mit drei Äquivalenten Natriumbis(trimethylsilyl)amid (2) in THF zu (Trimethylsilylimino){(trimethylsilyl)[tris(dimethylamino)phosphoranyliden]methyl}phosphan (4).

Obwohl im ³¹P-NMR Spektrum der Reaktionslösung neben Signalen geringer Intensität bei $\delta = 58$ nur die Resonanzen von 4 ($\delta = 407.5, 65.7; J = 117.3$) beobachtet werden, wird 4 lediglich in 40-50 proz. Ausbeute isoliert.

Als Zwischenstufe vermuten wir das Phosphonio(phosphinyliden)methanid 3, das sich durch 1,3-Wanderung der Silyl-Gruppe in 4 umlagert. Unseres Wissens wird damit erstmals eine P=N- auf Kosten einer P=C-Bindung ausgebildet; für den umgekehrten Prozeß, $P=N \rightarrow P=C$, gibt es Beispiele¹⁰). Die Umlagerung von 3 zu 4 kann jedoch nicht überraschen, denn die Wanderung einer Silyl-Gruppe an das carbanoide Kohlenstoff-Atom eines Phosphor-Ylids ist ein energetisch begünstigter Prozeß³) und von Schmidbaur et al. gut untersucht worden¹¹.

Die Molekülstruktur von 4 im Kristall wurde durch eine Röntgenstrukturanalyse ermittelt (Abb. 1). Die Atome N2, P2, C1, Si1, analysis, **4** can be described as a hetero allyl anion with a 3center-4-electron bond C1 - P1 - N1. Oxidative addition of sulfur or selenium results in formation of the imino(thioxo)phosphorane **8** or imino(selenoxo)phosphorane **9**.

C6, P1, N1, Si2 und C7 liegen auf einer kristallographisch bedingten Spiegelebene. Der Abstand P2–C1 beträgt 1.709(5) Å und entspricht den in Phosphanyl-substituierten Phosphor-Yliden gefundenen Werten¹²⁾. Demgegenüber ist der Abstand des ylidischen Kohlenstoff-Atoms C1 zu dem niederkoordinierten Phosphor-Atom P1 nur wenig länger [1.730(5) Å] und liegt im äußersten Bereich der Bindungslängen, die für Methylenphosphane $RP = CR_2$ beobachtet wurden¹⁰⁾. Der gefundene Abstand von P1 zu dem Imin-Stickstoff-Atom N1 [1.558(4) Å] ist typisch für Amino(imino)phosphane. Gleiches gilt für den Bindungswinkel C1–P1–N1, der 108.4(2)° beträgt.

Abb. 1. Molekülstruktur von 4. Ausgewählte Bindungslängen [Å] und Bindungswinkel [°]: N1-P1 1.558(4), P1-C1 1.730(5), C1-P2 1.709(5), P2-N2 1.645(6), P2-N3 1.621(4), C1-Si1 1.861(5), N1-Si2 1.680(5), Si1-C6 1.891(7), Si1-C5 1.868(5), Si2-C7 1.801(9), Si2-C8 1.825(10); Si2-N1-P1 138.8(3), N1-P1-C1 108.4(2), P1-C1-Si1 117.4(2), Si1-C1-P2 127.5(3), P2-C1-P1 115.2(3)

Zum strukturellen Vergleich bieten sich das Amino(imino)phosphan $(Me_3Si)_2N - P = N - SiMe_3^{(13)}$ (5) und das kürzlich beschriebene Imino(methylenamino)phosphan $tBu_2C = N - P = N - Mes^{* 14}$ (6) an: Hier betragen die P = N-Abstände 1.545(2) Å und 1.555(3) Å, die Valenzwinkel am Phosphor-Atom 108.4(1) und 107.3(1)°. Deutlich unterscheiden sich in 5 und 6 die Abstände zwischen dem niederkoordinierten Phosphor-Atom und dem Stickstoff-Atom der Amino-Gruppe in 5 [1.674(1) Å] bzw. dem der Methylenamino-Gruppe in 6 [1.595(3) Å]. Letzterer entspricht den längsten P = N-Bindungen, die in Iminophosphanen gefunden werden¹⁵. Niecke et al. stufen daher die Methylenamino-Gruppe als eine mit hoher π -Donorfähigkeit ein, und in 6 ist das 3-Zentren-4-Elektronen-Bindungssystem stark ausgeprägt. Da in 4 die C1-P1-Bindung vergleichbar verkürzt ist¹⁶, läßt sich die (Me₂N)₃PC(SiMe₃)-Gruppe in 4 ebenfalls als starker π -Donor einstufen und 4 als Hetero-Allyl-Anion beschreiben entsprechend den mesomeren Grenzstrukturen 4b und 4c. Auf Phosphoranylidenmethyl-substituierte Methylenphosphane $R_3P^{\oplus} - CH^{\ominus} - P = C(SiMe_3)_2^{(1)}$ und ein 1,3-Diphosphonio-substituiertes Allyl-Anion sei in diesem Zusammenhang hingewiesen¹⁸⁾.

Der P1-N1-Si2 Bindungswinkel ist mit 138.8(3)° ungewöhnlich groß verglichen mit dem in 5 [129.9(1)° bzw. in 6 [123.4(2)°]. Weiterhin ist der N1-Si2-Abstand [1.680(5) Å] gegenüber dem in 5 [1.721(1) Å] verkürzt. Es ist allerdings fraglich, ob dieses elektronische Gründe hat ¹⁹, oder lediglich einem flachen Potentialverlauf für die P-N-Si-Winkeldeformation und damit Packungseffekten zuzuschreiben ist. NMR-Experimente im Temperaturbereich von -90°C bis +100°C ergeben jedenfalls keine Hinweise für eine erniedrigte Inversionsbarriere am Imin-Stickstoff-Atom. Eine fluktuierende Molekülstruktur, wie bei Silyl-substituierten Amino-(imino)phosphanen beobachtet²⁰, konnte nicht festgestellt werden.

Das ³¹P-NMR-Signal des niederkoordinierten Phosphor-Atoms in 4 bei $\delta = 407.5$ ist im Vergleich zu Amino(imino)phosphanen $R_2N-P=N-SiMe_3$ ($\delta = 276-306^{21}$) stark tieffeld verschoben. Im Vergleich zu Mes* $-P=N-SiMe_3^{10}$ (7) ($\delta = 476$), in dem das Phosphor-Atom ebenfalls an ein Kohlenstoff-Atom im sp²-Hybridzustand gebunden ist, wird jedoch eine kräftige Hochfeldverschiebung beobachtet. Da in 7 der Aryl-Ring aus sterischen Gründen nicht in Konjugation mit der P=N-Bindung treten kann, dürfte die Ursache für die Hochfeldverschiebung von ca. 70 ppm in 4 das 3-Zentren-4-Elektronen- π -Bindungssystem sein.

Die oxidative Schwefelung bzw. Selenierung von 4 gelingt mit Schwefel oder Selen in Toluol unter Ultraschallbestrahlung. Nur 8 wurde analysenrein isoliert, 9 jedoch durch ³¹P- und ¹H-NMR-Spektren zweifelsfrei charakterisiert. die ³¹P-NMR-Daten entsprechen denen bekannter Imino[thioxo(selenoxo)]phosphorane Mes*-P[=S(Se)]=NR²².

Wir danken Prof. Dr. W. Sundermeyer, dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für die großzügige Unterstützung dieser Arbeit.

Experimenteller Teil

Allgemeines: ³¹P-NMR- und ¹H-NMR-Spektren: Jeol FX 90 Q (36.19 und 89.55 MHz); H_3PO_4 (ext.) und TMS (int.) als Standards. – ¹³C-NMR-Spektren: Bruker AC 200 (50.323 MHz); TMS (int.) als Standard. – Massenspektren: Finnigan MAT 8230. – Elementaranalysen: Mikroanalytisches Laboratorium der Universität Heidelberg.

(Trimethylsilylimino) {(trimethylsilyl) [tris(dimethylamino) phosphoranyliden | methyl | phosphan (4): 3.00 g (5.0 mmol) 1 werden in 20 ml THF suspendiert, und bei -78° C wird eine Lösung von 2.75 g (15 mmol) 2 zugetropft. Die Reaktionsmischung färbt sich gelb und nimmt beim Erwärmen auf Raumtemp. eine orangerote Farbe an. Nachdem alle flüchtigen Bestandteile im Ölpumpenvakuum entfernt wurden, wird der Rückstand mit 50 ml n-Hexan aufgenommen. Anschließend wird durch eine G4-Glasfritte filtriert und das Filtrat auf ca. 10 ml eingeengt. Bei -78°C kristallisieren innerhalb ca. 12 h 0.80-0.92 g (43-50%) gelbes 4, Schmp. 123° C. - ¹H-NMR (C₆D₆): $\delta = 0.37$ (s, 9H, SiCH₃), 0.39 (s, 9H, SiCH₃), 2.29 [d, ${}^{3}J(PH) = 9.3$ Hz, 18H, NCH₃]. - ${}^{13}C$ -NMR $(C_6 D_6)$: $\delta = 2.55 [t, {}^{3}J(P^VC) = {}^{3}J(P^{III}C) = 1.9 Hz, CSiCH_3], 3.14$ $[d, {}^{3}J(P^{III}C) = 3.45 \text{ Hz}, \text{ NSiCH}_{3}], 37.24 [dd, {}^{1}J(P^{V}C) = 40.2 \text{ Hz},$ ${}^{1}J(P^{III}C) = 4.4 \text{ Hz}, \text{ PCP}$], 38.18 [t, ${}^{2}J(P^{V}C) = {}^{4}J(P^{III}C) = 5.1 \text{ Hz},$ NCH₃]. $- {}^{31}$ P-NMR (C₆D₆): $\delta = 65.7$ [d, ${}^{2}J(PP) = 117.3$ Hz,

PNMe₃], 407.5 [d, ${}^{2}J(PP) = 117.3$ Hz, P=N]. - ${}^{29}Si-NMR$ (C_6D_6) : $\delta = -6.5 \, [dd, {}^2J(P^VSi) = 33.6 \, Hz, {}^2J(P^{III}Si) = 6.1 \, Hz,$ $CSiMe_3$], -10.51 [d, ² $J(P^{III}Si) = 11$ Hz, $P = NSiMe_3$]. - MS (EI, 70 eV): m/z (%) = 366 (7) [M⁺], 351 (2) [M⁺ - CH₃], 293 (2) $[M^+ - SiMe_3]$, 280 (5) $[(Me_2N)_3P(SiMe_3)C = PH^+]$, 147 (100) $[(Me_2N)_2P = CHCH_3^+]$ und weitere Fragmente.

C13H36N4P2Si2 (366.6) Ber. C 42.59 H 9.89 N 15.28 Gef. C 42.49 H 9.82 N 15.27

Thioxo(trimethylsilylimino) {(trimethylsilyl) [tris(dimethylamino)phosphoranyliden [methyl]phosphoran (8): 500 mg (1.36 mmol) 4 werden in 3 ml Toluol gelöst und mit 44 mg (1.36 mmol) Schwefel versetzt. Anschließend wird die Suspension ca. 8 h im Ultraschallbad behandelt. Dabei löst sich der Schwefel, und die Reaktionslösung entfärbt sich langsam; im ³¹P-NMR-Spektrum wird nur das Entstehen von 8 registriert. Das Lösemittel wird im Ölpumpenvakuum entfernt und der Rückstand aus ca. 10 ml heißem n-Hexan umkristallisiert; Ausb. 410 mg (76%) 8, Schmp. 118°C. - ¹H-NMR (C_6D_6) : $\delta = 0.44$ (s, 9H, SiCH₃), 0.54 (s, 9H, SiCH₃), 2.23 [d, ${}^{3}J(PH) = 9.5$ Hz, 18H, NCH₃]. $- {}^{13}C$ -NMR (C₆D₆): $\delta = 3.04$ [t, ${}^{3}J(P^{V}C) = {}^{3}J(P^{III}C) = 3.9 \text{ Hz}, \text{ CSi}CH_{3}, 3.06 \text{ [d, } {}^{3}J(P^{III}C) = 5.4$ Hz, NSiCH₃], 38.20 [d, ${}^{2}J(PC) = 4.4$ Hz, NCH₃], 47.51 [dd, ${}^{1}J(P^{v}C) = 137.6$ Hz, ${}^{1}J(P^{v}C) = 93.2$ Hz, PCP]. - ${}^{31}P$ -NMR $(C_6D_6): \delta = 54.4 \, [d, {}^2J(PP) = 44 \, Hz, PNMe_2], 171.2 \, [d, {}^2J(PP) =$ 44 Hz, P(S) = N]. - MS (EI, 70 eV):m/z (%) = 398 (100) [M⁺], 383 (54) $[M^+ - 15]$, 311 (100) $[M^+ - NSiMe_3]$, 119 (76) $[(Me_2N)_2P^+].$

C₁₃H₃₆N₄P₂SSi₂ (398.6) Ber. C 39.17 H 9.10 N 14.05 Gef. C 39.15 H 8.98 N 14.12

Selenoxo(trimethylsilylimino) {(trimethylsilyl) [tris(dimethylamino)phosphoranyliden]methyl}phosphoran (9): 80 mg (0.22 mmol) 4 in ca. 0.6 ml C₆D₆ wurden in einem NMR-Röhrchen ca. 12 h mit einem Überschuß grauen Selens im Ultraschallbad behandelt. Die Reaktionslösung verfärbte sich rot, und 9 wurde durch ¹H-NMRund ³¹P-NMR-Daten charakterisiert. - ¹H-NMR (C₆D₆): $\delta = 0.51$ (s, 9H, SiCH₃), 0.60 (s, 9H, SiCH₃), 2.35 [d, ${}^{3}J(PH) = 9.3$ Hz, 18H, PNCH₃]. $-{}^{31}$ P-NMR (C₆D₆): $\delta = 54.2$ [d, ${}^{2}J(PP) = 44$ Hz, $PNMe_2$], 159.1 [dd, ²J(PP) = 44 Hz, ¹J(PSe) = 894 Hz, N = PSe].

Strukturbestimmung von 4²³): Gelber Kristall durch Sublimation bei 50 °C/10⁻² Torr; Kristallgröße 0.3 \times 0.4 \times 0.7 mm; rhombische Raumgruppe *Pmcn* mit den Zellparametern a = 11.559(6), b =12.542(7), c = 15.864(8) Å; V = 2300 Å³; Z = 4; $d_{ber} = 1.06$ g cm³. Intensitätsmessung: Siemens-Stoe-AED2-Diffraktometer (Mo- K_{α} -Strahlung, ω -Scan); $2\Theta_{\max} = 50^{\circ}$; *hkl*-Bereich: $\pm 13, \pm 14, \pm 14$

Tab. 1. Atomparameter für 4; \overline{U} ist definiert als 1/3 der Spur des orthogonalen U-Tensors

Atom	x	У	Z	Ū
Si1	0.250	0.99154(14)	0.27690(11)	0.065
P2	0.250	1.12582(12)	0.44826(11)	0.059
P1	0.250	0.89459(11)	0.45416(11)	0.061
Si2	0.250	0.66255(13)	0.40092(12)	0.068
N1	0.250	0.7962(4)	0.3943(3)	0.069
C1	0.250	1.0088(4)	0.3932(4)	0.055
N2	0.250	1.1172(4)	0.5516(4)	0.082
C2	0.1452(9)	1.0976(6)	0.5970(4)	0.158
C5	0.1178(5)	0.9188(4)	0.2414(3)	0.087
C6	0.250	1.1238(6)	0.2198(5)	0.101
C7	0.250	0.6094(6)	0.5062(6)	0.136
C8	0.3725(11)	0.6097(6)	0.3418(6)	0.232
N 3	0.3635(4)	1.1965(3)	0.4264(3)	0.107
C3a	0.4600(11)	1.1742(9)	0.3672(8)	0.076(3)*
C4a	0.4088(12)	1.2836(10)	0.4950(8)	0.114(4)*
СЗЬ	0.4678(12)	1.1578(11)	0.3989(9)	0.088(4)*
C4b	0.3506(13)	1.3151(12)	0.4215(9)	0.126(5)*

* Isotrop verfeinert.

 \pm 18; 2342 gemessene Reflexe, davon 1374 beobachtet [$I > 2\sigma(I)$]; empirische Absorptionskorrektur [μ (Mo- K_{α}) = 2.53 cm⁻¹; 0.64 < T < 0.70]. Die Strukturlösung erfolgte mit Direkten Methoden, die Verfeinerung der Nichtwasserstoff-Atome (bis auf die fehlgeordneten Atome C3, C4) anisotrop, Wasserstoff-Atome in berechneten Lagen mit gemeinsamen isotropen Temperaturfaktoren; die Dimethylamino-Gruppe N3C3C4 ist fehlgeordnet (Atome C3a, C4a bzw. C3b, C4b isotrop mit Besetzungsdichte 0.5 verfeinert). 110 verfeinerte Parameter; R = 0.062, $R_w = 0.08 \{ w = 1/[\sigma(F)^2 +$ 0.0008 · F^2]; Restelektronendichte 0.3 e Å⁻³. Alle Berechnungen wurden mit SHELX76 und SHELXS8624 durchgeführt. Atomparameter von 4 finden sich in Tab. 1.

CAS-Registry-Nummern

- 1: 131104-41-1 / 2: 1070-89-9 / 4: 131079-25-9 / 8: 131079-26-0 / 9: 131079-27-1
- ¹⁾ H. Bock, U. Lechner-Knoblauch, P. Hänel, Chem. Ber. 119 (1986) 3749.
- ²⁾ K. A. Ostoja Starzewski, H. Bock, J. Am. Chem. Soc. 98 (1976) 8486.
- ³⁾ H.-J. Bestmann, A. J. Kos, K. Witzgall, P. von Ragué Schleyer, Chem. Ber. 119 (1986) 1331.
- ⁴⁾ P. von Ragué Schleyer, A. J. Kos, Tetrahedron 39 (1983) 1141.
- ⁵⁾ H. Bock, Angew. Chem. 101 (1989) 1659; Angew. Chem. Int. Ed. Engl. 28 (1989) 1627.
- ⁶ Y. Apeloig in *The Chemistry of Organic Silicon Compounds* (S. Patai, Z. Rappoport, Eds.), S. 57, Wiley, Chichester 1989.
 ⁷⁾ H. Grützmacher, H. Pritzkow, Angew. Chem. 101 (1989) 768; Angew. Chem. Int. Ed. Engl. 28 (1989) 740; H. Grützmacher, H. Dittelem M. Starbar, Tetraholman 46 (1990) 2381. Pritzkow, M. Stephan, Tetrahedron 46 (1990) 2381.
- ⁸⁾ U. Fleischer, H. Grützmacher, U. Krüger, J. Chem. Soc., Chem.
- ⁹ E. Niecke, W. Flick, Angew. Chem. 85 (1973) 586; Angew. Chem. Int. Ed. Engl. 12 (1973) 585.
 ¹⁰ L. N. Markovskii, V. D. Romanenko, A. V. Rouban, Acyclic Distribution Distribution View Distribution View Science View 1988.
- Dicoordinated Phosphorus Derivatives, Kiev-Science, Kiev 1988.
- ¹¹⁾ H. Schmidbaur, W. Malisch, Chem. Ber. 102 (1969) 83; H. Schmidbaur, W. Malisch, Chem. Ber. 103 (1970) 3448.
 ¹²⁾ H. Schmidbaur, J. Jeong, A. Schier, W. Graf, D. L. Wilkinson, C. Müller, C. Krötzer, New J. Chem. 12 (1989) 244; H. Grötzer, M. Schier, W. Graf, D. L. Wilkinson, C. Müller, C. Krötzer, New J. Chem. 13 (1989) 244; H. Grötzer, M. Schier, M.
- G. Müller, C. Krüger, New J. Chem. 13 (1989) 341; H. Grützmacher, H. Pritzkow, Chem. Ber. 122 (1989) 1411.
- ¹³⁾ S. Pohl, Chem. Ber. 112 (1979) 3159.
- ¹⁴⁾ E. Niecke, M. Nieger, C. Gärtner-Winkhaus, B. Kramer, Chem. Ber. 123 (1990) 477.
- ¹⁵⁾ U. Dressler, É. Niecke, S. Pohl, W. Saak, W. W. Schoeller, H.-G. Schäfer, J. Chem. Soc., Chem. Commun. 1986, 1086; O. Altmeyer, E. Niecke, M. Nieger, T. Busch, W. W. Schoeller, D. Stalke, Heteroatom Chem. 1 (1990) 191.
- ¹⁶⁾ Als Maß für die Bindungsverkürzung kann der Quotient der P-N-Bindungen in 6 und 5, bzw. der der P-C-Bindungen in 4 und 7 gelten: P-N_{Methylenamin}(6): P-N_{Amin}(5) = 1.595: 1.674 = 0.953; P-C(4): P-C(7) = 1.730: 1.836 = 0.942. ¹⁷⁾ A.-M. Caminade, C. Roques, N. Dufour, D. Colombo, F. Gonce, L. M. Mainer, J. Tawaka Jan, J. 2000, (200), (200), A. Lawaka A. De,
- J.-P. Majoral, Tetrahedron Lett. 30 (1989) 6869; A. Igau, A. Bacereido, G. Bertrand, K. Kühnel-Lysek, E. Niecke, New J. Chem. 13 (1989) 359.
- ¹⁸⁾ H. Schmidbaur, C. Paschalidis, O. Steigelmann, G. Müller, Angew. Chem. 101 (1989) 1739; Angew. Chem. Int. Ed. Engl. 28 (1989) 1739
- ¹⁹⁾ W. W. Schoeller, T. Busch, E. Niecke, Chem. Ber. 123 (1990) 1653
- ²⁰⁾ O. J. Scherer, N. Kuhn, Angew. Chem. 86 (1974) 899; Angew. Chem. Int. Ed. Engl. 13 (1974) 811
- ²¹⁾ S. Lochschmidt, A. Schmidpeter, *Phosphorus Sulfur* 29 (1986) 73. ²²⁾ L. N. Markovskii, V. D. Romanenko, A. V. Ruban, A. B. Dra-
- ²³⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wis-senschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54928, der Autorennamen und des Zeitschriftenzitates an-
- gefordert werden. ²⁴⁾ G. M. Sheldrick SHELX76, A Programm for Crystal Structure Determination, Cambridge 1976; SHELXS 86, Göttingen 1986.